ВИАМ/ 2012-206070

Жаростойкие и теплозащитные покрытия для лопаток турбины высокого давления перспективных ГТД

Е.Н. Каблов

доктор технических наук, академик РАН

С.А. Мубояджян доктор технических наук

Июнь 2012

Всероссийский институт авиационных материалов (ФГУП «ВИАМ» ГНЦ) – крупнейшее российское государственное материаловедческое предприятие, на протяжении 80 лет разрабатывающее и производящее материалы, определяющие авиационно-космической техники. 1700 облик современной сотрудников ВИАМ трудятся в более, чем в 30-ти научноисследовательских лабораториях, отделах, производственных цехах и испытательном центре, а также в 4-х филиалах института. ВИАМ выполняет заказы на разработку И поставку неметаллических металлических материалов, покрытий, И технологических процессов и оборудования, методов защиты от коррозии, а также средств контроля исходных продуктов, полуфабрикатов и изделий на их основе. Работы ведутся как по государственным программам РФ, так и по заказам ведущих предприятий авиационно-космического комплекса России и мира.

В 1994 г. ВИАМ присвоен статус Государственного научного центра РФ, многократно затем им подтвержденный.

За разработку и создание материалов для авиационнокосмической и других видов специальной техники 233 сотрудникам ВИАМ присуждены звания лауреатов различных государственных премий. Изобретения ВИАМ отмечены наградами на выставках Международных салонах в Женеве и Брюсселе. ВИАМ награжден 4 золотыми, 9 серебряными и 3 бронзовыми медалями, получено 15 дипломов.

Возглавляет институт лауреат Государственных премий СССР и РФ, академик РАН Е.Н.Каблов.

Статья подготовлена для опубликования в юбилейном научнотехническом сборнике <u>«80 лет. Авиационные материалы и</u> <u>технологии»</u> (приложение к журналу «Авиационные материалы и технологии»).

Электронная версия доступна по адресу: www.viam.ru/public

Жаростойкие и теплозащитные покрытия для лопаток турбины высокого давления перспективных ГТД

Е.Н. Каблов, С.А. Мубояджян

Всероссийский институт авиационных материалов.

К началу 80-х годов прошлого века были созданы первые двигатели 4-го поколения РД-33 и АЛ-31 для самолетов МиГ-29 и Су-27. Испытания двигателей показали, что порошковое алитирование рабочих лопаток турбины высокого давления (ТВД) не обеспечивает их защиту, ресурс двигателя ограничивался 50 ч, что было связано с повышением на ~150°С рабочей температуры газов в двигателях, а также возросшим уровнем тепловой напряженности лопаток ТВД. Возникла острая необходимость в разработке и создании принципиально новых способных рабочие турбин ГТД покрытий, защитить лопатки OT высокотемпературной (1100–1150°С) газовой коррозии, обеспечить требуемый уровень сопротивления к образованию на поверхности лопаток трещин термической усталости, также повысить их ресурс. В качестве новых покрытий были выбраны конденсированные многокомпонентные электронно-лучевые покрытия системы Me-Cr-Al-Y, которые уже нашли применение в США.

Интенсивная разработка новых электронно-лучевых покрытий на рубеже 80-х годов проводилась в ИЭС им. Е.О. Патона. На стадии опробования находились электронно-лучевые покрытия системы Ni–Co–Cr–Al–Y; решался вопрос о серийном выпуске электронно-лучевых установок УЭ-175 и их доработке для использования в условиях серийного производства на двигателестроительных предприятиях авиационной промышленности.

Работы в области ионно-плазменных покрытий проводились в основном в Харьковском физико-техническом институте (ХФТИ) и в ВИАМ. В ХФТИ разработали широко известные установки «Булат», предназначенные для нанесения упрочняющих покрытий (толщина 3–5 мкм) на режущий инструмент. В ВИАМ создали промышленную ионно-плазменную установку МАП-1 для

нанесения «толстых» (100 мкм) жаростойких защитных покрытий из многокомпонентных сплавов. В установке применяется технология, основанная на процессе конденсации из двухфазного потока вакуумно-дуговой плазмы, содержащей микрокапли испаряемого материала.

Сравнительные испытания лопаток ТВД с покрытиями системы Me–Cr–Al–Y, полученными по электронно-лучевой и новой ионно-плазменной технологии высоких энергий (ВПТВЭ), показали преимущества новой технологии и покрытий из сплава СДП-2 (Ni–Cr–Al–Y). Покрытия из сплава СДП-2 позволили в 4 раза повысить ресурс лопаток ТВД двигателя РД-33. Дальнейшее увеличение ресурса этих лопаток было основано на создании в ВИАМ впервые в мировой практике нового класса градиентных по строению покрытий – конденсационнодиффузионных (системы (Me–Cr–Al–Y)+(Me–Al–Cr–Y)), а также применения на лопатках принципа конструирования покрытий, когда тип покрытия на различных участках пера лопаток выбирается по их температурному и напряженному состоянию [1].

Для ГТД 5-го поколения в качестве рабочих лопаток ТВД рассматриваются монокристаллические лопатки из безуглеродистых жаропрочных никелевых сплавов (БЖС), легированных рением или рением и рутением, преимущественно со сложной системой конвекционно-пленочного или проникающего охлаждения (ССО), предназначенные для работы при температуре газа на входе в турбину до 2000–2100 К. Такие лопатки представляют собой «ажурные» конструкции со сложной системой внутренней полости, сообщающейся с воздухоподводящими каналами внутренней полости и газовым трактом двигателя системой перфорационных отверстий диаметром от 0,2 до ~0,8–1 мм, что обеспечивает эффективное внутреннее струйное и внешнее пленочное охлаждение наружной стенки лопатки при ее толщине ~1–1,5 мм [2, 3].

Для защиты поверхностей внешней трактовой и внутренней полости лопаток ТВД используются алюминидные покрытия, наносимые различными способами. Однако непосредственное использование этих покрытий на лопатках турбины из

БЖС не представляется возможным, так как отсутствие карбидов в БЖС и на границе «сплав-покрытие» приводит при высоких температурах к ускоренной диффузии Al и Cr из покрытия в поверхность жаропрочного сплава, содержание которых в покрытии в 1,5-3 раза превышает содержание их в сплаве. При длительном воздействии высоких температур (≥100 ч) под покрытием на глубине нескольких сотен микрометров формируется ярко выраженная ДО зона диффузионного взаимодействия (вторичная реакционная зона – BP3) на основе направленных поперек границы «сплав-покрытие» ТПУ фаз пластинчатой формы, разупрочняющих БЖС [4].

Наряду с этим, вследствие повышенной диффузионной подвижности на границе «БЖС-покрытие», снижается фазовая и структурная стабильность защитного жаростойкого покрытия. Поэтому для повышения термической стабильности покрытия и сохранения прочностных характеристик БЖС, в В процессе эксплуатации требуется контакте С покрытием разработка специального барьерного слоя, препятствующего возникновению ВРЗ или сдерживающего чрезмерное распространение этой зоны вглубь поверхности БЖС. Для предотвращения образования этой зоны или ограничения ее глубины за рубежом предложено проводить длительные вакуумные отжиги для содержания рения в дендритных осях и выравнивания междендритных пространствах (патент ЕР №1146134, 2001 г.), а также карбидизацию поверхности сплава перед нанесением жаростойкого термодиффузионного покрытия для формирования в поверхностном слое субмикронных карбидов тантала и вольфрама (патент США №5334263, 1994 г.), необходимо снижать степень легирования поверхностного слоя сплавов путем нанесения слоев чистых металлов, например платины (патент ЕР №0821076, 1998 г.), создавать диффузионный барьер из силицидов молибдена на границе «сплав-покрытие» (патент США №6291014, 2001 г.). Поэтому перед нанесением алюминидного покрытия на поверхность внутренней полости лопаток из БЖС на этой поверхности необходимо формировать барьерный слой, препятствующий ускоренному образованию ВРЗ под покрытием [2].

В ВИАМ разработаны технологии порошкового термодиффузионного насыщения углеродом поверхности БЖС, в том числе и поверхности внутренней полости лопаток ТВД, а также насыщения ее хромом и алюминием. На рис. 1 для сплавов ЖС36, ЖС40, ВЖМ1, ВЖМ3, ВЖМ4 приведена температурная зависимость удельного привеса, полученного за 4 ч при насыщении поверхности БЖС углеродом. Видно, что скорость насыщения поверхности БЖС углеродом в диапазоне температур 900–1100°С изменяется от 0,25 до 2 г/(м²·ч) в зависимости от типа БЖС. Расчеты показывают, что для насыщения углеродом поверхности на глубину до 25–40 мкм требуется (в зависимости от марки БЖС) удельный привес по углероду, равный 3–8 г/м² [5].

Рисунок 1. Температурная зависимость величины удельного привеса *∆m* при термодиффузионном насыщении в течение 4 ч поверхности БЖС углеродом для сплавов ЖС36 (□), ЖС40 (●), ВЖМ1 (■), ВЖМЗ (▲), ВЖМ4 (○)

Технология позволяет получать насыщенные углеродом слои заданной глубины на основе субмелкодисперсных карбидов тугоплавких элементов БЖС. Для термодиффузионного хромирования и последующего алитирования разработаны новые порошковые смеси, обладающие хорошей текучестью в исходном состоянии И после проведения соответствующих высокотемпературных процессов, и высокой активностью, обеспечивающей приемлемые скорости насыщения. Новые порошковые смеси позволяют легко заполнять внутреннюю полость лопаток с ССО и также легко удалять их после проведения процесса насыщения. На рис. 2 приведена зависимость величины удельного привеса по хрому и алюминию на образцах из сплава ЖСЗ6, имеющих на поверхности барьерный слой на основе карбидов тугоплавких элементов сплава, от продолжительности проведения процесса насыщения при температурах 900 и 950°С.

Рисунок 2. Зависимость величины удельного привеса от термодиффузионного насыщения поверхности образцов из сплава ЖС36 хромом (○, ●) и алюминием (■, □) после предварительного насыщения их углеродом (привес 3,5 г/м²) от продолжительности процесса насыщения при температурах 900 и 950°C

Видно, что новые порошковые смеси обеспечивают в области температур процесса насыщения 900–950°С за 1–1,5 ч получение удельного привеса по Cr на уровне 8–12 г/м², а по Al – от 12 до 40 г/м², что требуется по технологии нанесения жаростойкого хромоалюминидного покрытия с барьерным слоем на внутренней полости ТВД БЖС. Проведены поверхности лопаток ИЗ жаростойкость образцов БЖС исследования на статическую ИЗ С разработанными защиты поверхности внутренней полости ДЛЯ лопаток барьерным слоем и хромоалюминидным покрытием и показаны высокие защитные свойства покрытия на этих сплавах. На рис. 3 в качестве примера приводятся кривые статической жаростойкости разработанного покрытия на образцах из сплавов ЖСЗ6 и ВЖМ4.

Рисунок 3. Зависимость изменения удельной массы образцов из сплавов ЖС36 (●) и ВЖМ4 (○) с покрытием С(цементация)+Сг(хромирование)+Аl(алитирование) от продолжительности испытаний на жаростойкость при 1000°С

Испытания проводились в течение 700 ч при температуре 1000°С, характерной для лопаток ТВД из БЖС. Исследовано влияние разработанного

покрытия типа C(цементация)+Cr(хромирование)+ +Al(алитирование) на механические характеристики сплавов и показано, что покрытия не снижают долговечность при испытаниях на длительную и усталостную прочность БЖС. Отметим, что насыщение поверхности БЖС углеродом приводит к значительному повышению числа циклов при испытаниях образцов на усталость (при 20°C, σ=290 МПа):

– без барьерного слоя при $N=(1,7-5,5)\cdot 10^6$ циклов – разрушились;

– с барьерным слоем при $N=(23,7-25,4)\cdot 10^6$ циклов – сняты с испытаний.

Для случая, когда диффузионные алюминидные слои наносятся на внутреннюю и внешнюю поверхности лопаток по технологии газового циркуляционного алитирования (ГЦА) или хромоалитирования (ГЦП), поверхности лопаток из БЖС должны предварительно насыщаться углеродом.

Алюминидный слой, полученный газовым циркуляционным способом на наружных и внутренних поверхностях охлаждаемой лопатки, равномерный и однородный по составу, причем на поверхности внутренней полости наблюдается снижение толщины слоя (δ) покрытия и содержания в нем алюминия (*S*) до величин 0,66 и 0,9*S* по сравнению с покрытием на внешней трактовой поверхности лопатки [6].

Однако ГЦА или ГЦП по внешней поверхности лопаток не обеспечивают требуемый уровень защиты от высокотемпературного окисления, так как имеют недостаточный «запас» легирующих элементов (ограниченная толщина и содержание алюминия (и хрома) во внешнем слое покрытия).

Для защиты внешней трактовой поверхности лопаток турбин рассматриваются многокомпонентные (МК) и многослойные ионно-плазменные жаростойкие или теплозащитные покрытия (ТЗП), содержащие ионно-плазменный жаростойкий соединительный слой (ЖСС) и внешний керамический слой на основе стабилизированной керамики со столбчатой, слоисто-пористой или трещиноватой структурами. Такие структуры (ввиду своей податливости) обеспечивают необходимый уровень термической стойкости керамического слоя в контакте с

ЖСС ТЗП при быстрых изменениях температуры на поверхности рабочих лопаток ТВД, что характерно для условий работы этих лопаток. Для получения столбчатой структуры керамического слоя ТЗП обычно используется процесс электроннолучевого или среднечастотного магнетронного напыления, для слоисто-пористой – различные разновидности процесса газотермического напыления, а для формирования трещиноватой (фрагментированной) структуры – различные виды термической обработки покрытия [2].

Для лопаток ТВД, прошедших стадии термодиффузионного насыщения поверхностей углеродом и последующее ГЦА или ГЦП, можно в качестве внешнего ионно-плазменного слоя ЖСС использовать серийные двухстадийные конденсационно-диффузионные градиентные покрытия типа СДП-2+ВСДП-16 или ВСДП-9+ВСДП-18, а также новое покрытие с конденсированным слоем на основе сплава ВСДП-3 системы

Ni–Cr–Al–Y, дополнительно легированной Hf и Re, разработанное в качестве ЖСС для рабочих лопаток ТВД двигателя ПД-14 для самолета МС-21. Для рабочих лопаток ТВД двигателя ПД-14 рекомендовано ТЗП следующего типа С+ГЦА+ВСДП-3+ВСДП-16+ZrO₂·Y₂O₃.

Керамический слой покрытия наносится по электронно-лучевой технологии. Жаростойкость такого покрытия показана на рис. 4. Следует отметить, что поиск конденсированного покрытия для ЖСС продолжается с целью повышения служебных характеристик ТЗП. Известно, что ресурс ТЗП определяется в основном скоростью роста оксидной пленки на поверхности ЖСС, разделяющей керамический слой ТЗП от ЖСС и ее когезионной прочностью [7].

Рисунок 4. Зависимость изменения удельной массы образцов из сплава ВЖМ4 с покрытием С+ГЦА+ВСДП-3+ВСДП-16+ZrO₂·Y₂O₃ (внешний керамический слой нанесен по электронно-лучевой технологии) от продолжительности испытаний на жаростойкость при 1150 (*1*) и 1100°С (*2*)

Лопатки ТВД, прошедшие стадию термодиффузионного порошкового насыщения углеродом и последующее порошковое алитирование поверхности только внутренней полости, имеют чистую трактовую поверхность. Поэтому ЖСС ТЗП на основе конденсационно-диффузионного покрытия должен содержать барьерный слой, снижающий активность диффузионных процессов на границе БЖС с ЖСС. С этой целью в ВИАМ разработаны две технологии: нанесение барьерного слоя из монослойного карбида хрома (толщина – до 3-4 мкм) и металлокерамического барьерного слоя (толщина 10-15 мкм) на основе сплава системы Ni–Cr–Al–R (R: Y, Hf, Hf–Re и др.), содержащего в основном мелкодисперсные карбиды хрома [8]. В последнем случае на первой фазе конденсированного ЖСС осаждение ведется в присутствии нанесения ацетилена, затем подача реактивного газа прекращается, и вторую фазу нанесения проводят в высоком вакууме. Таким образом, для лопаток из БЖС, имеющих чистую трактовую поверхность, можно получить следующие типы ЖСС ТЗП: Сr₃C₂+СДП-2+ВСДП-16 и (СДП-2+С₂H₂)+СДП-2+ВСДП-16.

Исследования показывают, что барьерный слой на основе монослойного карбида хрома (первая технология) обеспечивает при одинаковых условиях испытаний меньшую на ~10% глубину вторичной реакционной зоны (по сравнению с барьерным слоем, полученным по второй технологии). Однако вторая технология позволяет формировать конденсированный слой ЖСС теплозащитного покрытия за одну стадию осаждения, а реализация первой технологии возможна только при двухстадийном осаждении.

Таким образом, жаростойкое покрытие на внутреннюю и внешнюю трактовую поверхности лопаток ТВД с ССО из БЖС с требуемыми защитными свойствами получить путем последовательного можно только ЛИШЬ термодиффузионное чередования различных технологий: насыщение поверхности углеродом, ГЦА или порошковое хромирование и алитирование, Типы ионно-плазменная технология высоких энергий. многослойных жаростойких покрытий, разработанных в ВИАМ для лопаток турбин ГТД из БЖС, приведены в таблице. Эти же покрытия могут рассматриваться как жаростойкие соединительные слои для ТЗП.

Таблица 1

Ионно-плазменные защитные жаростойкие покрытия и соединительные слои ТЗП для лопаток турбин ГТД из БЖС

Назначение	Конструкция покрытия	Система покрытия
Защита от газовой коррозии в области температур	МеС+СДП-2+ВСДП-16	MeC+(Ni-Cr-Al-Y)+(Ni-Al-Cr-Y)
Жаростойкие соединительные слои ТЗП	МеС+ВСДП-8+ВСДП-18	MeC+(Ni-Cr-Al-W-C-Y)+(Ni-Al-Cr-W-C-Y)
	(СДП-2+C ₂ H ₂)+СДП-2+ВСДП-16	(CrC+NiAlY)+(Ni–Cr–Al–Y)+(Ni–Al–Cr–Y)
	МеС+ВСДП-9+ВСДП-18	MeC+(Ni-Cr-Al-Ta-Y)+(Ni-Al-Cr-Ta-Y)
	С+ГЦА+ВСДП-3+ВСДП-16	MeC+NiAl+(Ni–Cr–Al–Re–Hf–Y)+ +(Ni–Al–Cr–Re–Hf–Y)

Керамический слой ТЗП имеет низкий коэффициент теплопроводности (для керамики на основе стабилизированного оксидом иттрия диоксида циркония

(YSZ), турбин, коэффициент широко используемого на лопатках теплопроводности в области рабочих температур изменяется в диапазоне 2,5-3 Вт/м·К). Наличие керамического слоя при тепловых потоках ~(10⁶-10⁷) Вт/м², которые реализуются в современных ГТД, обеспечивает либо снижение температуры на теле лопатки ТВД на величину ~100°С при толщине керамического слоя ~150 мкм, либо позволяет повысить на столько же температуру на поверхности покрытия лопатки, что эквивалентно увеличению температуры рабочих газов двигателя. При этом снижение температуры на поверхности ЖСС лопатки позволяет существенно (в 2 раза и более) повысить ее ресурс, а рост температуры на поверхности керамического слоя ТЗП лопатки обеспечивает повышение удельных характеристик двигателя при первоначальном ее ресурсе.

Ресурс ТЗП зависит, в первую очередь, от состава жаростойкого слоя, конструкции и технологии нанесения ТЗП соединительного И определяется когезионной прочностью оксидной пленки на поверхности ЖСС, которая формируется на этой поверхности в процессе эксплуатации ТЗП из-за «прозрачности» диоксида циркония для кислорода. Поэтому ресурс ТЗП ограничен временем и условиями роста оксидной пленки на поверхности соединительного слоя, что является основным недостатком этих покрытий. Критическая толщина оксидной пленки, при которой имеет место ее когезионное разрушение, приводящее к скалыванию керамического слоя ТЗП, условий эксплуатации. зависит, В первую очередь, ОТ Так, ДЛЯ высокотемпературных ГТД, имеющих приемистость в пределах нескольких секунд, наблюдается значительное снижение ресурса ТЗП по сравнению с ГТД, приемистость которых составляет 20–30 с.

На рис. 5–7 приводятся результаты испытания на жаростойкость образцов из сплавов ВЖМ4, ВЖМ5 и ЖС36 с ТЗП, имеющим электронно-лучевой керамический слой на основе YSZ и различные ЖСС, а также микроструктура покрытия С+ГЦА+ВСДП-3+ВСДП-16+YSZ в исходном состоянии и после

длительных испытаний на жаростойкость и внешний вид образцов с ТЗП после 500 ч испытаний. На рис. 5 показано влияние состава ЖСС на жаростойкость ТЗП. Легирование сплава ВСДП-3 системы Ni-Cr-Al-Y-Hf-Re обеспечило более высокую жаростойкость ТЗП, что можно объяснить снижением диффузионной активности между ЖСС и БЖС, а также возможно более низкой скоростью окисления поверхности ЖСС за счет оксида гафния. Сравнивая микроструктуры покрытия В исходном состоянии И после высокотемпературной экспозиции можно отметить, что состав керамического ТЗП слоя практически не изменился (подтверждено данными микрорентгеноспектральных исследований). Толщина оксидного слоя между ЖСС и керамическим слоем ТЗП за 500 ч испытания при 1100°С увеличилась от нескольких до 10-15 мкм, что близко к критической величине, при которой возможно отслоение керамического слоя ТЗП. На рис. 7 показано отслоение керамического слоя на образцах, содержащих ионно-плазменный конденсированный слой из сплава СДП-2.

Рисунок 5. Зависимость изменения удельной массы от продолжительности испытаний на жаростойкость при температуре 1100°С образцов из сплавов ВЖМ4 (*1*, *2*), ВЖМ5 (*3*, *4*), ЖС36 (*5*, *6*) с ТЗП: С(цементация)+ГЦА+СДП-2+ВСДП-16+YSZ (*1*, *3*, *5*) и С+ГЦА+ВСДП-3+ВСДП-16+YSZ (*2*, *4*, *6*)

Рисунок 6. Микроструктура покрытия С+ГЦА+ВСДП-3+ВСДП-16+YSZ в исходном состоянии (*a* – ×300) и после испытаний при 1100°С в течение 500 ч (*б* – ×540)

Рисунок 7. Внешний вид образцов из сплавов ВЖМ4 (*a*), ВЖМ5 (*б*) и ЖС36 (*в*) с покрытиями после испытаний на жаростойкость при температуре 1100°С в течение 500 ч: *1* – С+ГЦА+СДП-2+ВСДП-16+YSZ; *2* – С+ГЦА+ВСДП-3+ВСДП-16+YSZ

При использовании в качестве керамического слоя ТЗП керамики YSZ толщиной 150 мкм (для получения теплозащитного эффекта: ~100°С), масса рабочих лопаток ТВД повышается на ~1 кг на каждый 1 м² трактовой поверхности лопаток. Одновременно с этим заметно уменьшается проходное сечение газовоздушного тракта двигателя по сечению ТВД на величину $2 \cdot N \cdot H \cdot \delta$, где δ – толщина керамического слоя ТЗП; N – число лопаток ТВД; H – высота лопаток.

Снижение массы лопаток ТВД с ТЗП и увеличение проходного сечения газовоздушного тракта двигателя по сечению ТВД можно достичь путем уменьшения толщины керамического слоя ТЗП, что возможно только лишь путем снижения коэффициента теплопроводности такого слоя. Поэтому в настоящее время все усилия разработчиков ТЗП направлены на разработку керамики с коэффициентом теплопроводности ≤1–1,5 Вт/(м·К).

В качестве перспективных материалов для ТЗП рассматриваются керамики на основе цирконатов редкоземельных металлов типа Me₂Zr₂O₇ (где Me: Gd, Nd, Sm, La, Ce), имеющих теплопроводность <1,6 Bt/(м·K), рабочую температуру до 2300°С, которые не склонны к спеканию [8, 9]. Большой объем исследований в области новых материалов для ТЗП выполнен в течение последних лет агентством NASA (США), в результате чего было предложено использовать для ТЗП материал системы [10]. $(ZrO_2 - Y_2O_3) - Nd_2O_3(Gd_2O_3)$ Sm_2O_3)-Yb₂O₃(Sc₂O₃) Материал при температурах до 1300°С имеет уникально низкую теплопроводность – для ТЗП, полученных порошковым плазменным напылением, 0,6 Вт/(м·К), а для ТЗП с электронно-лучевым керамическим слоем ~1 Вт/(м·К), которая слабо зависит от продолжительности высокотемпературной выдержки. Высокие защитные свойства такой керамики авторы связывают с образованием в структуре керамического слоя наноразмерных кластеров оксидов Nd₂O₃-Yb₂O₃ или $Gd_2O_3-Yb_2O_3$.

Для получения ТЗП с керамическим слоем с низкой теплопроводностью в ВИАМ созданы уникальная технология и оборудование для магнетронного среднечастотного распыления мишеней на основе сплавов циркония с редкоземельными металлами с последующим плазмохимическим осаждением керамики в среде аргонокислородной плазмы. Магнетронный процесс обеспечивает преимущества по сравнению с электронно-лучевым методом нанесения керамических слоев ТЗП, среди которых можно отметить: снижение энергопотребления до 20 раз и уменьшение массы и габаритов установки более чем в 5 раз (по сравнению с установкой электронно-лучевого напыления фирмы ALD). Отметим, что существующее магнетронное оборудование для нанесения керамических пленок позволяет получать покрытия толщиной несколько микрометров [11].

Для нанесения керамического слоя ТЗП магнетронным осаждением методами точного литья, вакуумно-индукционной и вакуумно-дуговой плавки изготовлены мишени из сплавов системы Zr-Y-R, где R - один или два редкоземельных металла. Отработаны режимы осаждения керамических покрытий для получения столбчатой структуры керамического слоя и показано, что при содержании У в сплаве мишени 5–10% (по массе) в покрытии формируется кубическая и тетрагональная модификации оксида циркония ZrO₂, а также кубическая модификация оксида иттрия Y₂O₃ и оксида редкоземельного (данные рентгеноструктурного фазового анализа). Характерная металла микроструктура такого керамического слоя показана на рис. 8. Видно столбчатое строение покрытия, столбцы имеют различные поперечные размеры пористость, что должно способствовать снижению коэффициента И теплопроводности (λ). На образцах с односторонним покрытием измерена теплопроводность керамик системы Zr-Y-R-O и показано, что введение в систему YSZ одного или двух редкоземельных металлов приводит к снижению λ до 1–1,6 Вт/(м·К). Так, для керамики системы Zr–Y–Gd–O при температуре 1000°С получено значение $\lambda=1$ Вт/(м·К), что в 2,5–3 раза меньше, чем для широко используемой керамики YSZ. Испытания ТЗП с ЖСС типа Сr(хромирование)+С(цементация)+Аl(алитирование)+ВСДП-3+ВСДП-16 И керамического слоя системы Zr-Y-Gd-O на циклическую жаростойкость показали высокие защитные свойства покрытия. На рис. 9 приведен внешний вид образцов из БЖС с ТЗП и керамическим слоем системы Zr-Y-Gd-O толщиной 90 магнетронным мкм, нанесенным методом, после высокотемпературной выдержки.

Рисунок 8. Микроструктура керамического покрытия системы Zr–Y–Gd–O, полученного магнетронным среднечастотным плазмохимическим осаждением

Рисунок 9. Внешний вид образцов из сплавов ВЖМ4 (*a*), ВЖМ5 (*б*) и ЖС36 (*в*) с теплозащитным покрытием Cr+C+Al+BCДП-3+BCДП-16+(Zr–Y–Gd–O) после испытаний на циклическую жаростойкость при температуре 1150°С в течение 230 ч. Покрытие на сплаве ЖС36 (*в*) дополнительно испытывалась при 1200°С в течение 16 ч

При нанесении на перо лопатки ТЗП имеет место частичное покрытие поверхности перфорационных отверстий. Глубина проникновения покрытия в перфорационные отверстия превышает в ~2-3 раза диаметр отверстий. Причем толщина покрытия монотонно убывает по глубине отверстия, а максимальная толщина покрытия располагается непосредственно за кромкой отверстия и имеет величину ~0,5 от толщины ТЗП. При диаметре перфорационных отверстий ~0,2-0,8 мм сужение отверстий со стороны внешней трактовой поверхности лопаток может приводить к значительному изменению процесса истечения воздуха, охлаждающего лопатку, и должно учитываться при расчете, конструировании и изготовлении лопаток ГТД. Поэтому для лопаток турбин с ССО выбор типа защитного покрытия необходимо проводить на стадии проектирования, так как степень сужения перфорационных отверстий существенно зависит от типа сужение перфорационных покрытий покрытия. При этом минимальное оказывают ионно-плазменные диффузионные и легированные диффузионные покрытия, а максимальное – ТЗП, толщина которых на поверхности пера лопатки может составлять 150 мкм и более.

В заключение отметим, что создание системы покрытий для защиты от высокотемпературной газовой коррозии внутренней полости и внешней трактовой поверхности монокристаллических лопаток турбин с ССО, имеющих «ажурную» конструкцию с множеством внутренних И внешних перфорационных отверстий малого диаметра, представляет собой сложную научно-техническую задачу, успешное решение которой возможно только путем последовательного использования и сочетания химических и физических методов осаждения покрытий и создания нового поколения промышленного оборудования высокой точности с автоматической системой управления технологическим процессом.

Список литературы

- Каблов Е.Н., Мубояджян С.А., Будиновский С.А., Луценко А.Н. Ионно-плазменные защитные покрытия для лопаток газотурбинных двигателей //Металлы. 2007. №5. С. 23–34.
- 2. Каблов Е.Н., Мубояджян С.А. Защитные покрытия лопаток турбин перспективных ГТД //ГТТ. 2001. №3(12). С. 30–32.
- Muboyadjyan S.A. High-Temperature Ion-Plasma Coatings for Gas-Turbine Engine Vanes //Aerospace Journal. 1998 (May–June). P. 24–25.
- Walston W.S., Schaeffer J.C., Murphy W.H. A new type of microstructural instability in superalloys-SRZ (Superalloys 1996). Warrendale, PA: TMS. 1996. P. 9–18.
- Мубояджян С.А., Галоян А.Г. Термодиффузионные процессы насыщения поверхности жаропрочных сплавов тугоплавкими элементами и углеродом //Технология легких сплавов. 2007. №2. С. 114–120.
- Лесников В.П., Кузнецов В.П., Горошенко Ю.А. Диффузионное насыщение алюминием и хромом никелевых сплавов циркуляционным методом из газовой фазы //МиТОМ. 1998. №10. С. 21–25.
- Wellman R.G., Deakinb M.J., Nicholls J.R. The effect of TBC morphology on the erosion rate of EB PVD TBCs //Wear. 2005. №258. P. 349–356
- Будиновский С.А., Мубояджян С.А., Гаямов А.М., Степанова С.В. Ионно-плазменные жаростойкие покрытия с композиционным барьерным слоем для защиты от окисления сплава ЖСЗ6-ВИ //МиТОМ. 2011. №1. С. 34-40.
- Nicholls J.R., Lawson K.J., Johnstone A., Rickerby D.S. Methods to reduce the thermal conductivity of EB-PVD TBCs //Surface and Coatings Technology. 2002. № 151–152. P. 383–391.
- 10. Zhu D., Miller R.A. Thermal conductivity and sintering behavior of advanced thermal barrier coatings /NASA/TM-2002-211481. 2002. 15 p.
- Gaoa P., Meng L.J., dos Santos M.P., Teixeiraa V., Andritschky M. Study of ZrO–YO films prepared by RF magnetron reactive sputtering //Thin Solid Films. 2000. V. 377–378. P. 32–36.